
Improving 3D Medical Image Registration

CUDA Software with Genetic Programming

W. B. Langdon
Centre for Research on Evolution, Search and Testing

Computer Science, UCL, London

GISMOE: Genetic Improvement of Software for Multiple Objectives

10.7.2014

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

Improving 3D Medical Image Registration

CUDA Software

with Genetic Programming

• NiftyReg

• Pre-Post GP tuning of key GPU code

• GP BNF grammar

• Mutation, crossover gives new kernel code

• Fitness: compile, run on random example

• Results: it works, where next?

W. B. Langdon, UCL 2

Evolving Faster NiftyReg 3D Medical Image

Registration CUDA kernels

• What is NiftyReg?

– UCL CMIC M.Modat sourceForge 16000 C++

• 3D Medical Images

– Magnetic Resonance Imaging (MRI) brain scans

1mm resolution → 2173=10,218,313 voxels

• Registration: NiftyReg nonlinear alignment of 3D images

• Graphics GPU parallel hardware

• CUDA allows C++ functions (kernels) to run in parallel

NiftyReg

• Graphics hardware “ideal” for processing

2 and 3 dimensional images.

• NiftyReg partially converted to run in

parallel on GPUs.

• Aim to show GP can help with conversion

of remainder or improvement of kernels.

• reg_bspline_getDeformationField() 97lines

4

reg_bspline_getDeformationField3D

• Chosen as used many times (≈100,000)

70% GPU (GTX 295) time

• Need for accurate answers (stable

derivatives).

• Active region (Brain) occupies only fraction

of cube. List of active voxels.

• Kernel interpolates (using splines)

displacement at each voxel from

neighbouring control points.

5

CPU v GPU

Original

kernel

Improved

Kernels

GP K20c 2243 times CPU

K20c 93 times CPU

Note: Log

vertical scale

Spline Interpolation

7

In one dimension displacement is linear combination of

displacement at four neighbouring control points:

Displacement = αd0 + βd1 + γd2 + δd3

Spline coefficients α β γ δ given by cubic polynomial of

distance from voxel to each control point 0,1,2,3.

In 3D have 64 neighbours, so sum 64 terms.

If control points are five times unit distance, there are only

4×5=20 coefficients which can be precalculated.

spline interpolation between

4×4×4=64 neighbours

W. B. Langdon, UCL 8

Control points every

5th data point.

473=103,823 control

points

All 53=125 data points

in each control cube

have same control

point neighbours

reg_bspline_getDeformationField3D

• For each active voxel (≈106)

– Calculate its x,y,z displacement by non-linear

B spline (cubic) interpolation from 64

neighbouring control points

• Approximately 600 flops per voxel.

– Re-use limited by register/shared memory.

• Read voxel list and control points

displacement from global memory (via

texture cache)

• Write answer δx,δy,δz to global memory

9

Improve Kernel
• Fixed control grid spline coefficients (20) need be

calculate once and then stored.

• GPU has multiple types of memory:

– Global large off chip, 2 level cache, GPU dependent

– “Local” large off chip, shares cache with global

– “Textures” as global but read only proprietary cache

(depends on GPU).

– “Constant” on chip 64K read only cache, contention

between threads, GPU dependent

– “shared” on chip 16-48K, configurable, GPU dependent

– Registers fast, limited, GPU dependent

• Leave to GP to decide how to store coefficients

10

GP Automatic Coding
• Target open source system in use and

being actively updated at UCL.

• Chose NiftyReg

• GPU already give 15× speedup or more.

We get another 25-120× (up to 2243×CPU)

• Tailor existing system for specific use:

– Images of 2173, Dense region of interest,

– Control points spacing = 5

– 6 different GPUs (16 to 2496 cores)

11

Six Types of nVidia GPUs

Parallel Graphics Hardware

W. B. Langdon, UCL 12

Name year MP Cores Clock

Quadro NVS 290 2007 1.1 2 × 8 16 0.92 GHz

GeForce GTX 295 2009 1.3 30 × 8 240 1.24 GHz

Tesla T10 2009 1.3 30 × 8 240 1.30 GHz

Tesla C2050 2010 2.0 14 × 32 448 1.15 GHz

GeForce GTX 580 2010 2.0 16 × 32 512 1.54 GHz

Tesla K20c 2012 3.5 13 × 192 2496 0.71 GHz

Evolving Kernel

• Convert source code to BNF grammar

• Grammar used to control modifications to

code

• Genetic programming manipulates patches

• Copy/delete/insert lines of existing code

• Patch is small

• New kernel source is syntactically correct

• No compilation errors. Loops terminate
– Scoping rules. Restrict changes to loops and loop variables

13 W. B. Langdon, UCL

Before GP

• Earlier work (EuroGP 2014) suggested

– 2 Objectives: low error and fast, too different

– Easy to auto-tune key parameters:

• Number of threads, compiler GPU architecture

• Therefore:

– Single-objective GP: go faster with zero error

– Pre and post tune 2 key parameters

– GP optimises code (variable length)

• Whole population (300) compiled together

W. B. Langdon, UCL 14

Compile Whole Population

Compiling 300 kernels together is 19.3 times faster than

running the compiler once for each. 15

Note Log x scale

Pre and Post Evolution Tuning

1.number parallel threads per block

2.compiler –arch code generation

1.CUDA Block_size parallel thread per block

During development 32

tune → 64 or 128

After GP tune →128/512

2. Compiler code -arch sm_10

After GP tune → sm_10, sm_11 or sm_13

 W. B. Langdon, UCL 16

GP Evolving Patches to CUDA

W. B. Langdon, UCL 17

BNF Grammar for code changes

 if(tid<c_ActiveVoxelNumber) {

Line 167 kernel.cu

Two Grammar Fragments (Total 254 rules)

<Kkernel.cu_167> ::= " if" <IF_Kkernel.cu_167> " {\n
<IF_Kkernel.cu_167> ::= "(tid<c_ActiveVoxelNumber)"

18

//Set answer in global memory

positionField[tid2]=displacement;

Line 298 kernel.cu

<Kkernel.cu_298> ::= "" <_Kkernel.cu_298> "\n"

<_Kkernel.cu_298> ::= "positionField[tid2]=displacement;"

BNF Grammar fragment

example parameter

Replace variable c_UseBSpline with constant

<Kkernel.cu_17> ::= <def_Kkernel.cu_17>

<def_Kkernel.cu_17> ::= "#define c_UseBSpline 1\n"

19

In original kernel variable can be either true or false.

However it is always true in case of interest.

Using constant rather than variable avoids

 passing it from host PC to GPU

 storing on GPU

 and allows compiler to optimise statements like if(1)…

Grammar Rule Types

• Type indicated by rule name

• Replace rule only by another of same type

• 25 statement (eg assignment, Not declaration)

• 4 IF

• No for, but 14 #pragma unroll

• 8 CUDA types, 6 parameter macro #define

20 W. B. Langdon, UCL

Representation
• variable length list of grammar patches.

• no size limit, so search space is infinite

• tree like 2pt crossover.

• mutation adds one randomly chosen grammar

change

• 3 possible grammar changes:

• Delete line of source code (or replace by “”, 0)

• Replace with line of GPU code (same type)

• Insert a copy of another line of kernel code

• Mutation movements controlled so no variable

moved out of scope. All kernels compile.

• No changes to for loops. All loops terminate

21

Example Mutating Grammar

<IF_Kkernel.cu_167> ::= "(tid<c_ActiveVoxelNumber)"

<IF_Kkernel.cu_245> ::= "((threadIdx.x & 31) < 16)"

2 lines from grammar

<IF_Kkernel.cu_245><IF_Kkernel.cu_167>

Fragment of list of mutations

Says replace line 245 by line 167

if(tid<c_ActiveVoxelNumber)

if((threadIdx.x & 31) < 16)

New code

Original code

22

Original code caused ½ threads to stop. New condition known always

to be true. All threads execute. Avoids divergence and pairs of

threads each produce identical answer. Final write discards one

answer from each pair.

Fitness

• Run patched Kernel on 1 example image

(≈1.6million random test cases)

• All compile, run and terminate

• Compare results with original answer

• Sort population by

– Error (actually only selected zero error)

– Kernel GPU clock ticks (minimise)

• Select top half of population.

• Mutate, crossover to give 2 children per parent.

• Repeat 50 generations

• Remove bloat

• Automatic tune again 23

Bloat Removal

24
Fitness effect of each gene evolved by GP tested one

at a time. Only important genes kept.

Results

• Optimised code run on 16,816,875 test

cases. Error essentially only floating point

noise. Ie error always < 0.000107

• New kernels work for all. Always faster.

• Speed up depends on GPU

25

Evolution of kernel population

W. B. Langdon, UCL 26

Gen 0 ½ random

kernels produce

incorrect answers.

Fraction of incorrect

kernels falls to about ⅓

Gen 0 ½ population

are error free and

within 10%

After gen7 ≥1/3

pop are faster

End or run ≥½ pop

speedup ≥28%

Post Evolution Auto-tune

27 Compile and run GP kernel with all credible block_size and chose fastest

NiftyReg Results

28

Speedup of CUDA kernel after optimisation by GP, bloat removal

and with optimal threads per block and -arch compared to hand

written kernel with default block size (192) and no -arch.

Unseen data.

Tesla K20c

NiftyReg Code changes

29

Remove CUDA code New CUDA code

#define directxBasis 1

if((threadIdx.x & 31) < 16) if(1)

displacement=make_float4(

0.0f,0.0f,0.0f,0.0f);

displacement.y +=

 tempDisplacement(c,b).y * basis;

nodeAnte.z =

(int)floorf((float)z/gridVoxelSpacing.z);

directxBasis means pre-calculated X-spline co-efficients are read

from texture memory not calculated.

16 idle threads exactly duplicate 16 others.

Two genes <288><232> <288>+<293> safe but rely on optimising

compiler to remove unneeded code.

GP can Improve Software

• Existing code provides

1. It is its own defacto specification

2. High quality starting code

3. Framework for both:

– Functional fitness: does evolve code give right
answers? (unlimited number of test cases)

– Performance: how fast, how much power, how
reliable,…

• Evolution has tuned code for six very
different graphics hardware.

W. B. Langdon, UCL 30

Where Next

• gzip [WCCI2010] GP evolves CUDA kernel

• Bowtie2 50000 lines C++ [HOT paper Wednesday

11:55] 70x improvement

• StereoCamera auto-port 7x improvement

GP does everything [EuroGP-2014]

• Babel Pigin 230k line GP and programmer

working together [SSBSE 2014 challenge]

• NiftyReg GP clean but working on top of

manual improvements. Up to 2234×CPU

W. B. Langdon, UCL 31

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html

W. B. Langdon, UCL 32 32

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Discussion Points

• Where next?

– 3D images for more types Brain NMR

– Port/improve other UCL CMIC software

• Code is not so fragile

• Build from existing code (source, assembler,
binary)

• fitness: compare patched code v. original
– Gives same or better answers?

– Runs faster? Uses less power? More reliable?

W. B. Langdon, UCL 33

Typical Active Part of Image

W. B. Langdon, UCL 34

Original Kernel

35

1,718,861 activeVoxels

To reduce clutter only one 1 in 400 plotted

Voxels processed in x-order

so caches may reload at

end of line

On average 97 voxels

processed per line

Improved kernel

36

1,861,050 activeVoxels

To reduce clutter only one 1 in 400 plotted

On average 2481 voxels

processed per line

(before cache refresh)

Manual code changes

• Specialise to fixed (5) control point

spacing

• Package coefficient __device__ function()

so GP can use or replace by storing

pre-calculated values.

• Expose kernel launch parameters for

auto-tuner.

• grammar automatically created except for

variable scope limits

37 W. B. Langdon, UCL

CUDA Grammar Types

• #pragma unroll

• __restrict__

• __launch_bounds__

• c_UseBSpline

• c_controlPointVoxelSpacing

• constantBasis

• BasisA

• directxBasis

• RemX

true

5

Pre-calculate

Array index order

Pre-calculate x

Save x%5

GP Evolution Parameters

• Pop 300, 50 generations

• 50% 2pt crossover

• 50% mutation (3 types delete, replace, insert)

• Truncation selection

• 1 test example, reselected every generation

• 1.5 hours

• Unique initial population (≈hence 300)

39 W. B. Langdon, UCL

Tesla K20c

StereoCamera Code changes

40

Remove CUDA code New CUDA code

int * __restrict__ disparityMinSSD,

volatile extern __attribute__

((shared)) int col_ssd[];

 extern __attribute__

((shared)) int col_ssd[];

volatile int* const reduce_ssd =

&col_ssd[(64)*2 -64];

 int* const reduce_ssd =

&col_ssd[(64)*2 -64];

#pragma unroll 11

if(X < width && Y < height) if(dblockIdx==0)

__syncthreads();

#pragma unroll 3

Parameter disparityMinSSD no longer needed as made shared (ie not global)

All volatile removed
Two #pragma inserted

if() replaced

__syncthreads() removed

GP and Software

• Genetic programming can automatically
re-engineer source code. E.g.

– hash algorithm

– Random numbers which take less power, etc.

– mini-SAT

• fix bugs (5 106 lines of code, 16 programs)

• create new code in a new environment
(GPU) for existing program, gzip

• 70 speed up 50000 lines of code

• 7 times speed up for stereoKernel GPU

WCCI 2010

IEEE TEC

EuroGP 2014

EuroGP 2014

3D NMR Brain scans GECCO 2014

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html

GP Automatic Coding

• Show a machine optimising existing human

written code to trade-off functional and non-

functional properties.

– E.g. performance versus:

 Speed or memory or battery life.

• Trade off may be specific to particular use.

For another use case re-optimise

• Use existing code as test “Oracle”.

(Program is its own functional specification)

42 W. B. Langdon, UCL

When to Automatically Improve Software

• Genetic programming as tool. GP tries

many possible options. Leave software

designer to choose between best.

• Port and optimise to new environment, eg

desktop→phone (3D stereovision)

W. B. Langdon, UCL 43

What’s my favourite number?

W. B. Langdon, UCL 44

Bowtie2 Patch

45

Wei

ght

Mutati

on

Source

file

line type Original Code New Code

999 replaced bt2_io.cpp 622 for2 i < offsLenSampled i < this->_nPat

1000 replaced sa_rescomb

.cpp

50 for2 i < satup_->offs.size() 0

1000 disabled 69 for2 j < satup_->offs.size()

100 replaced

aligner_sws

se_ee
_u8.cpp

707 vh = _mm_max_epu8(vh, vf); vmax = vlo;

1000

deleted 766 pvFStore += 4;

1000

replaced 772 _mm_store_si128(pvHStore, vh); vh = _mm_max_epu8(vh, vf);

1000

deleted 778 ve = _mm_max_epu8(ve, vh);

• Evolved patch 39 changes in 6 .cpp files

• Cleaned up 7 changes in 3 .cpp files

• 70+ times faster

offsLenSampled=179,215,892 _nPat=84

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

9606 references and 8904 online publications

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

blog.html

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

Downloads

http://www.cs.bham.ac.uk/~wbl/biblio/
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

