CREST

William B. Langdon

Department of Computer Science, University College London (w.langdon®cs.ucl.ac.uk)

Parallel GPQUICK

4 R
GPQUICK Xeon 6126 24 threads
g J
Crossover
Fitness

AVX 16n test cases

Figure 1: The new version of Andy Singleton’s GPQUICK is used in generational mode. It uses both posix threads and Intel AVX 512 which processes
16 floats simultaneously. Crossover parents and subtrees are chosen as normal in the serial code but crossover is delayed until all children have been
allocated parents. Each thread waits for a lock and then choses the next free child and releases the lock. Crossover is followed immediately by fithess
evaluation of the new child. The thread then looks for another child waiting to be processed. With large populations most cores are almost fully loaded.

a Why

The future of computing is parallel. Population
based approaches, like genetic programming,
are embarrassingly parallel. Nonetheless a
little effort is required to get the best from
single instruction multiple data approaches
(like GPUs) and now available in AVX 512 on
some Intel servers. The new C++ code
combines pthreads with SIMD AVX across test
cases to give the fastest GP system at up to
140 billion GP operations per second.

€ Avx Eval

Original GPQUICK recursively passes though
whole tree for each fithess case. Fitness is
given by comparing tree’s evaluation with
target value. For AVX process tree once (for

large trees good for cache locality) by,
processing all test cases in parallel and keeping

intermediate values on explicit stack.

AVX Eval constant (push onto stack)
Load value (e.g. 0.997) to top of stack 48 times

float Vak= constlist] 1p—>op |

for(1=0;1<ntest;1+=3)
mm256_store 8 copies of val

LA

Top of eval stack
AVX Eval variable

Push whole of test suite onto stack.

X for 16n test cases
|

memcpy 64n bytes
Y

Top of eval stack

AVX Eval expression

Reclusively evaluation arguments. (Add has two
arguments). Push 48 results onto stack

Eval;
Eval;
for(1=0;1<ntest;1+=16)
mmJS12_load 16 floats from top of stack

sp0 = mm512_load 3= Top of eval stack
spl =mm512_load E Next on eval stack

val = spO+spl 16 tloats %/
mm3S12_store(val) 16 floats

e Results

GP Primitives Interpreted Per Second. (Default
GPU is nVidia GeForce 8800 GTX.) [Fragment of

W.B.Langdon. Large scale bioinformatics data mining with parallel genetic
programming on graphics processing units. In Massively Parallel Evolutionary
Computation on GPGPUs, pp311-347. Springer, 2013. Tab. 3]

Experiment Pop Prog Test Speed GPU
size size cases 10° OP/S

Mackey-Glass 204 800 11.0 1200 895

Mackey-Glass 204 800 13.0 1200 1056

Mackey-Glass 204 800 10.2 1200 1720

Protein 1 048 576 56.9 200 504

Laser 18 225 55.4 151 360 656

Laser 5 000 49.6 376 640 190

Sextic 100 16 200 5 XBox 360

Sextic 12 500 70.0 100000 4073

Image processing 2048 20438 ~ 10° 26200 28%8200

TMBL 120 300 63 536 191724 260 GTX

Multiplexor-6 12500 120.6 64 47

Multiplexor-11 12500 156.2 2 048 501

Multiplexor-20 262 144 428.5 2 048 254000 295 GTX

Multiplexor-37 262144 915.6 8 192 665000 295 GTX

GeneChip 16 384 <63.0 200 314

Cancer 5242880 <15.0 128 535

Cancer 5 242 330 12.9 91 1352 C2050

Cancer 5 242 330 12.9 91 8 517 C2050

Sextic 4000, 500, 48 410° 48 138948 GPQuick

0 Coding Performance false sharing

The hardware transparently allows threads to both
read and write data. However for performance do
not allow read/write data in the same cache line
to be used by different threads. E.g. use 64 byte
alignment and padding to ensure each thread has
its own read/write data.

[5 performance new/free in threads

Avoid malloc and delete (new or free) in threaded
code. Although library is re-entrant, freeing
memory early in a thread is much slower than
doing it later in the sequential code.

[6 GP parameters

Representation: flattened binary tree.

Terminal set: X, 250 constants -0.995 to 0.997
Function set: MUL ADD DIV SUB

Fitness cases: 48 fixed input -0.977/89 to 0.979541
(randomly selected from -1.0 to +1.0

y = XX(X-1)(X-1)(x+1)(x +1)

Selection: tournament 7,fitness=2 | GP(x)-y;|
Population: Panmictic, non-elitist, generational
Parameters: Initial population (4000) ramped half
and half Koza (1992) depth between 2-6. 100% un-
biased subtree crossover. 10 000 gens. Stop if any
tree reaches 15 million.

Tree depth

0 Tree depth =(2m size)'/?2

GPquick allocates nthreads (e.g. 24) stacks,
each ntest wide (e.g. 48) and maximum tree
depth deep. It estimates max evolved tree
depth from user specified max tree size using
Flajolet’s square root approximation.

Full -
10000 Ten GP runs X
I Flajolet

1000 -

100 -

10 R

1

L N N B N R R B N R C
10 100 1000 10000 100000 1e+06 1e+07

| Tree size
Q Summary

f

On a standard Intel Xeon Gold 6126 2.60GHz
server, with an unmodified version of Linux,
the AVX multi-threaded GPquick is faster than
any single computer system except for a few
GPU systems on Boolean benchmarks or other
specialised problems.

Reference: Faster Genetic Programming
GPquick via multicore and Advanced Vector
Extensions, W. B. Langdon and W. Banzhaf.
Technical Report RN/19/01.

Inspired by Dagstuhl Seminar 18052 on Genetic
Improvement of Software.

GPQUICK

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz

Background
Lenovo SD539 Intel Xeon Gold 12C 2.6GHz

https://arxiv.org/abs/1902.09215
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz

