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ABSTRACT
This paper1 presents a brief outline of an approach to online
genetic improvement. We argue that existing progress in
genetic improvement can be exploited to support adaptivity.
We illustrate our proposed approach with a ‘dreaming smart
device’ example that combines online and offline machine
learning and optimisation.
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1. INTRODUCTION
Many Artificial Intelligence (AI) techniques are designed

to cope with a world characterised by noisy, incomplete and
inconsistent data. They can also cater for multiple conflict-
ing and competing objectives; precisely the scenario faced
by the practicing software engineer.

In this paper we outline how a Search Based Software
Engineering approach called ‘genetic improvement’ could be
extended to provide online adaptivity. Search Based Soft-
ware Engineering (SBSE) [7, 9, 13, 16, 19] is one example
of a form of ‘Software Engineering AI’ that has been widely
applied across many software engineering domains, includ-
ing requirements [44], management [8], design [36], testing
[31], refactoring [32] and bug fixing [27].
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SBSE applies computational search to optimise problems
in software engineering. It might be thought of as merely
‘another engineering application of computational search and
optimisation’. However, the virtual nature of software makes
it a special case; the optimisation system and the artefact
to be optimised are both constructed from the same engi-
neering material [14]. This has profound consequences for
the optimisation process and for the optimisations it is able
to achieve.

A subfield within SBSE has emerged focusing on Dynamic
Adaptive Search Based Software Engineering [15, 17], for
which a blend of machine learning and optimisation is re-
quired. In dynamic adaptive SBSE, properties are adapted
by reconfiguring or even rewriting the deployed software as
it executes. The properties considered are typically oper-
ational properties such as computation time, bandwidth,
throughput, memory use and power consumption.

Our goal is to develop this kind of iterative learning based
adaptivity, so that optimisation techniques, developed for
the SBSE research agenda, can be used to optimise learn-
ing and adaptivity. In particular, we see an important role
for Genetic Programming (GP) [35] as a means of program
improvement that has come to be known as ‘genetic im-
provement’ [17, 18, 26] (and has also been referred to as
‘evolutionary improvement’ [42]).

2. GENETIC IMPROVEMENT
There has been a dramatic recent upsurge in interest and

techniques for improving existing programs using genetic
improvement [17]. Genetic improvement has demonstrated
several recent advances, such as speeding up execution [25,
26, 33, 42] and fixing bugs [2, 27]. Furthermore, because ge-
netic improvement modifies an existing system, rather than
seeking to build a new system from scratch, it can speed up
highly non-trivial real world programs [25, 26, 37, 38] and
fix real world bugs [23, 28, 27].

Genetic improvement has also been used to port one sys-
tem to a new version on a different platform and language
[24] and to balance implementation objectives [43]. It can
also synthesise and specialise different versions of a system
[34]. Related work on similar performance-improving mod-
ifications to existing code has also reported dramatic speed
ups on real-world systems [37, 38].

Genetic improvement starts from the premise that an ex-
isting program can be improved by searching for modifica-
tions in existing system [33, 42, 43], finding ‘patches’ from
elsewhere in the system [1, 25, 26, 27, 41] or by transplanting
code from one program to another [18, 34].



3. ONLINE GENETIC IMPROVEMENT
Recent breakthroughs in genetic improvement make it

tempting to speculate on whether ‘online’ genetic improve-
ment may now lie within our grasp. The remainder of this
paper sketches possible ways in which this might be realised.

3.1 Exposing Implicit Parameters
We first propose to search for expressions over internal

program variables that are sensitive to operational proper-
ties of interest so that we might expose these variables as
‘tuning parameters’ [6, 20]. For instance, suppose we seek
to improve response time for a device, a property that can be
measured as a function of the input vector to the program.
We could search for arithmetic and logic expressions in the
program (right hand sides of assignments, actual parame-
ters, conditional and loop predicates etc). The expressions
we seek are those which, when mutated or refactored by GP,
will have an effect on response time.

Having identified these expressions, we can refactor the
program to make the values of these expressions ‘tunable’.
That is, we expose the internal program variables on which
these expressions depend, so that they can become addi-
tional parameters to the program. The system will thereby
acquire an extended input space that includes exposed ‘in-
put’ parameters.

Observe that tuning may (often) change the semantics of
the program and thereby cause the parameter choice to be
rejected. The problem is thus to find the choices of parame-
ters and their values that yield a program that is acceptably
faithful to the original’s semantics, while improving the non-
functional property of interest. These values can be found
(learned) by optimisation, as with other examples of param-
eter tuning using SBSE [29, 40].

Human programmers might reject changes made by any
automated programming technique. If they feel that they
have little understanding or control then there will be a
natural reluctance to ‘trust the optimiser’. Automated pro-
gramming approaches such as ours thus raise the question
‘will the machine generated code be maintainable?’ [10].
Fortunately, since parameters already embody a degree of
encapsulation, the human merely needs to understand the
parameters exposed by our approach and can choose to ac-
cept some and reject others. Our approach could thus be
thought of as a dialog between the human and the machine
about the design of the ‘adaptive interface’.

We envisage two distinct classes of user: programmers and
endusers. Programmers will be concerned with maintaing
the system and will use potential-parameter exploration as
a design dialog. We speculate that a variant of Aspect Ori-
ented Programming (AOP) [22] might prove to be one way
to introduce such tunable adaptivity into an existing soft-
ware system. The traditional aim of AOP was to separate
‘cross-cutting’ concerns, but it can also be used to extract
aspects from non-aspectual code [4] in much the way we
propose here.

End users might also be able to exploit the advantages of
parameter exposition. Clearly, we would require an intuitive
way to communicate the options exposed. The user will
need to be able to indicate which operational characteristics
matter. They would want a simple, effective and always-
available option to revert to the unoptimised version. These
are well-known challenges for the software personalisation
community, on which we might draw inspiration [21].
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Figure 1: Our approach to offline learning and opti-
misation with online deployment for adaptivity.

Our overall approach is illustrated in Figure 1. The ap-
proach consists of offline learning and optimisation and sub-
sequent online adaptive selection and deployment of learned
optimisations.

3.2 Illustrative Example: Dreaming Devices
Sometimes optimisation might be undertaken in real time.

This would be particularly challenging due to the tight time
bounds inherent in real-time adaption. However, in this pa-
per we wish to focus on the many scenarios we envisage for
dynamic adaptive SBSE and online genetic improvement in
which there is a longer optimise-and-adapt cycle. We be-
lieve such longer optimised adaptivity cycles map well onto
current and likely future use-cases. This has the significant
technical advantage that it offers considerably more compu-
tational time to develop learned optimisation.

Imagine the scenario in which a device such as a smart-
phone has two modes of operation: ‘normal’ and ‘charging’.
In normal operational mode, the device is not connected to a
power source, while in the other, it is charging. The charg-
ing process might take place overnight, while the device’s
user sleeps or in other periods where the user is disengaged
from the device. We use the term ‘overnight’ to make the
scenario more concrete, but this period refers to any time
during which the user is disengaged and power is available
for learning optimisation. During an overnight charging cy-
cle there is no need to optimise the power consumption, but
such optimisation becomes more important during normal
operational mode. This instantiation of our approach is de-
picted in Figure 2.

We propose to augment the device with a background pro-
cess that runs during normal operational mode, to collect
data that can subsequently be used in an ‘overnight learn-
ing cycle’. During the overnight cycle, the data collected
during the daytime operation is used as a source of train-
ing data to optimise performance for subsequent operation.
Since the device is not in normal use during the overnight
cycle and since there is plenty of power available during this
cycle, this is surely the ideal opportunity for optimisation
learning.
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Figure 2: Our approach applied to dynamic adaptive
optimisation of smart devices.

Humans may learn overnight during sleep cycles by re-
playing the day’s events; a process we call ‘dreaming’[39].
In the same way, our device might also learn from the ob-
servations made during normal operational use. Allowing
a little poetic license, we might even claim that we would
have created a kind of ‘dreaming device’ that learns during
its sleep cycle by replaying the events of the day. It might
even prove interesting, entertaining (and perhaps even infor-
mative) to switch on the device’s screen and directly observe
this dream state.

There are many challenges in achieving such a ‘dreaming
device’ learning process: Data collection needs to be an un-
obtrusive background process. The overnight learning pro-
cess might be designed specifically to reduce daytime power
and therefore the costs of data collection would have to be
amortised into the overall resource reduction achieved.

Such ‘dreaming’ is an offline learning technique that can
subsequently be used to dynamically adapt the device as it is
used. The natural cycle of operation affords a considerable
period for optimisation: typically something in the region of
6 to 8 hours during the overnight charging cycle.

There are many other examples of systems where simi-
lar periods of time might be available for the learning and
optimisation process, yet the overall approach would still
offer online dynamic adaptive optimisation. Even an ‘old
fashioned’ desktop application might be augmented with an
overnight learning optimisation process. On-board systems
on commercial and private vehicles might also be able to
avail themselves of an overnight learning optimisation phase;
the vehicle may be stationary for much of its life, offering
opportunities for optimisation.

Web-based systems, providing services to customers, might
also be able to find opportunities for optimisation during
operation. These systems have no overnight mode. They
are typically the subjects of a theoretical requirement for
continual availability. However, using profiling, we might
hope to find evidence for obvious exploitable periods of likely
‘quiet usage’, during which learning and optimisation can
take place.

Of course, predictive models, such as these, that are able
to determine when exploitable quiet periods are likely to oc-
cur would be very useful. Indeed, learning when the learning
phase might best take place is also an example of the learn-
ing optimisation process.

Self-adaptive and autonomic computing are certainly not
new [3, 12, 30]. Much work has also already been done on
machine learning for adaptivity. For instance, the problem
of trading disk idle time, power consumption and spin-up la-
tency has been studied and developed over two decades [5].
Our vision of online genetic improvement, briefly set out
here, is not without challenges, many of which will be fa-
miliar to researchers working on adaptivity in general. For-
tunately, there is cause for optimism. Gabel and Su [11]
showed that approximately 6 lines of code are required for
code to be original with respect to the code base, while we
found [26] that only 7 lines need be changed in one system
to produce a factor 70 speedup using genetic improvement.
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